Sale!

Fourier Analysis An Introduction

Original price was: ₹895.00.Current price is: ₹716.00.

+ Free Shipping

by Elias M. Stein(Author), Rami Shakarchi(Author)

  • Publisher ‏ : ‎ Levant(2012)
  • Language ‏ : ‎ English
  • Paperback ‏ : ‎ 309 pages
  • ISBN-10 ‏ : ‎ 9789380663463
  • ISBN-13 ‏ : ‎ 978-9380663463

Availability: 1 in stock

SKU: 9789380663463 Category: Tags: , ,

Table of Contents

  • Foreword
  • Preface
  • Chapter 1. The Genesis of Fourier Analysis
    • 1 The vibrating string
      • 1.1 Derivation of the wave equation
      • 1.2 Solution to the wave equation
      • 1.3 Example: the plucked string
    • 2 The heat equation
      • 2.1 Derivation of the heat equation
      • 2.2 Steady-state heat equation in the disc
    • 3 Exercises
    • 4 Problem
  • Chapter 2. Basic Properties of Fourier Series
    • 1 Examples and formulation of the problem
      • 1.1 Main definitions and some examples
    • 2 Uniqueness of Fourier series
    • 3 Convolutions
    • 4 Good kernels
    • 5 Cesàro and Abel summability: applications to Fourier series
      • 5.1 Cesàro means and summation
      • 5.2 Fejér’s theorem
      • 5.3 Abel means and summation
      • 5.4 The Poisson kernel and Dirichlet’s problem in the unit disc
    • 6 Exercises
    • 7 Problems
  • Chapter 3. Convergence of Fourier Series
    • 1 Mean-square convergence of Fourier series
      • 1.1 Vector spaces and inner products
      • 1.2 Proof of mean-square convergence
    • 2 Return to pointwise convergence
      • 2.1 A local result
      • 2.2 A continuous function with diverging Fourier series
    • 3 Exercises
    • 4 Problems
  • Chapter 4. Some Applications of Fourier Series
    • 1 The isoperimetric inequality
    • 2 Weyl’s equidistribution theorem
    • 3 A continuous but nowhere differentiable function
    • 4 The heat equation on the circle
    • 5 Exercises
    • 6 Problems
  • Chapter 5. The Fourier Transform on ℝ
    • 1 Elementary theory of the Fourier transform
      • 1.1 Integration of functions on the real line
      • 1.2 Definition of the Fourier transform
      • 1.3 The Schwartz space
      • 1.4 The Fourier transform on
      • 1.5 The Fourier inversion
      • 1.6 The Plancherel formula
      • 1.7 Extension to functions of moderate decrease
      • 1.8 The Weierstrass approximation theorem
    • 2 Applications to some partial differential equations
      • 2.1 The time-dependent heat equation on the real line
      • 2.2 The steady-state heat equation in the upper half-plane
    • 3 The Poisson summation formula
      • 3.1 Theta and zeta functions
      • 3.2 Heat kernels
      • 3.3 Poisson kernels
    • 4 The Heisenberg uncertainty principle
    • 5 Exercises
    • 6 Problems
  • Chapter 6. The Fourier Transform on ℝd
    • 1 Preliminaries
      • 1.1 Symmetries
      • 1.2 Integration on ℝd
    • 2 Elementary theory of the Fourier transform
    • 3 The wave equation in ℝd × ℝ
      • 3.1 Solution in terms of Fourier transforms
      • 3.2 The wave equation in ℝ3 × ℝ
      • 3.3 The wave equation in ℝ2 × ℝ: descent
    • 4 Radial symmetry and Bessel functions
    • 5 The Radon transform and some of its applications
      • 5.1 The X-ray transform in ℝ2
      • 5.2 The Radon transform in ℝ3
      • 5.3 A note about plane waves
    • 6 Exercises
    • 7 Problems
  • Chapter 7. Finite Fourier Analysis
    • 1 Fourier analysis on ℤ(N)
      • 1.1 The group ℤ(N)
      • 1.2 Fourier inversion theorem and Plancherel identity on ℤ(N)
      • 1.3 The fast Fourier transform
    • 2 Fourier analysis on finite abelian groups
      • 2.1 Abelian groups
      • 2.2 Characters
      • 2.3 The orthogonality relations
      • 2.4 Characters as a total family
      • 2.5 Fourier inversion and Plancherel formula
    • 3 Exercises
    • 4 Problems
  • Chapter 8. Dirichlet’s Theorem
    • 1 A little elementary number theory
      • 1.1 The fundamental theorem of arithmetic
      • 1.2 The infinitude of primes
    • 2 Dirichlet’s theorem
      • 2.1 Fourier analysis, Dirichlet characters, and reduction of the theorem
      • 2.2 Dirichlet L-functions
    • 3 Proof of the theorem
      • 3.1 Logarithms
      • 3.2 L-functions
      • 3.3 Non-vanishing of the L-function
    • 4 Exercises
    • 5 Problems
  • Appendix: Integration
    • 1 Definition of the Riemann integral
      • 1.1 Basic properties
      • 1.2 Sets of measure zero and discontinuities of integrable functions
    • 2 Multiple integrals
      • 2.1 The Riemann integral in ℝd
      • 2.2 Repeated integrals
      • 2.3 The change of variables formula
      • 2.4 Spherical coordinates
    • 3 Improper integrals. Integration over ℝd
      • 3.1 Integration of functions of moderate decrease
      • 3.2 Repeated integrals
      • 3.3 Spherical coordinates
  • Notes and References
  • Bibliography
  • Symbol Glossary
  • Index
Weight 750 kg

Reviews

There are no reviews yet.

Be the first to review “Fourier Analysis An Introduction”

Your email address will not be published. Required fields are marked *

Shopping Cart
Scroll to Top